On this page
lineless_table_rec
简介
lineless_table_rec
库源于阿里读光-LORE无线表格结构识别模型。
在这里,我们做的工作主要包括以下两点:
- 将模型转换为ONNX格式,便于部署
- 完善后处理代码,与OCR识别模型整合,可以保证输出结果为完整的表格和对应的内容
该库仅提供推理代码,如有训练模型需求,请移步LORE-TSR
模型转换ONNX
详情参考:ConvertLOREToONNX
安装
pip install lineless_table_rec
使用
查看效果
识别结果(点击展开)
<html>
<body>
<table>
<tbody>
<tr>
<td rowspan="1" colspan="1">姓名</td>
<td rowspan="1" colspan="1">年龄</td>
<td rowspan="1" colspan="1">性别</td>
<td rowspan="1" colspan="1">身高/m</td>
<td rowspan="1" colspan="1">体重/kg</td>
<td rowspan="1" colspan="1">BMI/(kg/m²)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Duke</td>
<td rowspan="1" colspan="1">34</td>
<td rowspan="1" colspan="1">男</td>
<td rowspan="1" colspan="1">1.74</td>
<td rowspan="1" colspan="1">70</td>
<td rowspan="1" colspan="1">23</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ella</td>
<td rowspan="1" colspan="1">26</td>
<td rowspan="1" colspan="1">女</td>
<td rowspan="1" colspan="1">1.60</td>
<td rowspan="1" colspan="1">58</td>
<td rowspan="1" colspan="1">23</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Eartha</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">女</td>
<td rowspan="1" colspan="1">1.34</td>
<td rowspan="1" colspan="1">29</td>
<td rowspan="1" colspan="1">16</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Thelonious</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">男</td>
<td rowspan="1" colspan="1">1.07</td>
<td rowspan="1" colspan="1">17</td>
<td rowspan="1" colspan="1">15</td>
</tr>
<tr>
<td rowspan="1" colspan="1">TARO</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">男</td>
<td rowspan="1" colspan="1">1.728</td>
<td rowspan="1" colspan="1">65</td>
<td rowspan="1" colspan="1">21.7</td>
</tr>
<tr>
<td rowspan="1" colspan="1">HANAKO</td>
<td rowspan="1" colspan="1">22</td>
<td rowspan="1" colspan="1">女</td>
<td rowspan="1" colspan="1">1.60</td>
<td rowspan="1" colspan="1">53</td>
<td rowspan="1" colspan="1">20.7</td>
</tr>
<tr>
<td rowspan="1" colspan="1">NARMAN</td>
<td rowspan="1" colspan="1">38</td>
<td rowspan="1" colspan="1">男</td>
<td rowspan="1" colspan="1">1.76</td>
<td rowspan="1" colspan="1">73</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">NAOMI</td>
<td rowspan="1" colspan="1">23</td>
<td rowspan="1" colspan="1">女</td>
<td rowspan="1" colspan="1">1.63</td>
<td rowspan="1" colspan="1">60</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</body>
</html>
Last updated 12 Sep 2024, 19:30 +0800 .